Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine.

نویسندگان

  • D V Santi
  • A Norment
  • C E Garrett
چکیده

DNA containing 5-azacytosine (azaC) has previously been shown to be a potent inhibitor of DNA-cytosine methyltransferases. In this report, we describe experiments which demonstrate that azaC-DNA forms a covalent complex with Hpa II methylase, a bacterial enzyme that methylates the internal C of C-C-G-G sequences. The complex does not undergo detectable dissociation over at least 3 days and is stable to denaturation with NaDodSO4. After extensive digestion of the complex with DNase and phosphodiesterase, gel filtration gave the methylase bound to approximately one equivalent of azaC; the digested complex had an apparent molecular weight similar to that of the native enzyme. Although prior treatment of azaC-DNA with Hpa II endonuclease had only a slight effect on binding of the methylase, treatment with Msp I endonuclease, which also cleaves at C-C-G-G sequences, resulted in a significant reduction in binding; this indicates that azaC residues in the recognition sequence of Hpa II are an important component in the covalent interaction of the methylase. However, since there was residual binding it is possible that azaC residues elsewhere in DNA also covalently bind to the methylase. These results provide an explanation of why azaC-DNA is such a potent inhibitor of cytosine methyltransferases and how the incorporation of such low levels of azaC into DNA can result in dramatic decreases in the methylation of cytosine. Finally, consideration of the probable catalytic mechanism of cytosine methylases and the chemical properties of azaC suggests that the inhibition is, at least in part, an active-site directed process and permits a proposal for the structure of the covalent complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA (Cytosine-C5) methyltransferase inhibition by oligodeoxyribonucleotides containing 2-(1H)-pyrimidinone (zebularine aglycon) at the enzymatic target site.

Aberrant cytosine methylation in promoter regions leads to gene silencing associated with cancer progression. A number of DNA methyltransferase inhibitors are known to reactivate silenced genes; including 5-azacytidine and 2-(1H)-pyrimidinone riboside (zebularine). Zebularine is a more stable, less cytotoxic inhibitor compared to 5-azacytidine. To determine the mechanistic basis for this differ...

متن کامل

The mechanism of inhibition of DNA (cytosine-5-)-methyltransferases by 5-azacytosine is likely to involve methyl transfer to the inhibitor.

The mechanism of inhibition of DNA (cytosine-5-)-methyltransferases by the mechanism-based inhibitor 5-azacytosine has remained unclear, mainly because of the unavailability of a substrate in which the inhibitor, but not normal cytosine, is present at the target site. We synthesized an oligonucleotide duplex containing a single target site for the EcoRII methyltransferase, in which the target b...

متن کامل

The irreversible binding of azacytosine-containing DNA fragments to bacterial DNA(cytosine-5)methyltransferases.

DNA containing 5-azacytosine is an irreversible inhibitor of DNA(cytosine-5)methyltransferase. This paper describes the binding of DNA methyltransferase to 32P-labeled fragments of DNA containing 5-azacytosine. The complexes were identified by gel electrophoresis. The EcoRII methyltransferase specified by the R15 plasmid was purified from Escherichia coli B(R15). This enzyme methylates the seco...

متن کامل

Synthesis of oligonucleotide inhibitors of DNA (Cytosine-C5) methyltransferase containing 5-azacytosine residues at specific sites.

The incorporation of 5-azacytosine residues into DNA causes potent inhibition of DNA (Cytosine-C5) methyltransferases. The synthesis of oligodeoxyribonucleotides incorporating single or multiple 5-aza-2'-deoxycytidine residues at precise sites was undertaken to generate an array of sequences containing the reactive 5-azacytosine base as specific target sites for enzymatic methylation. Preparati...

متن کامل

Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2'-deoxycytidine.

Treatment of Friend erythroleukemia cells with the antileukemic drugs 5-azacytidine and 5-aza-2'-deoxycytidine leads to rapid, time-dependent, and dose-dependent decrease of DNA methyltransferase activity and synthesis of markedly undermethylated DNA. Since this DNA is at least partially methylated in vivo and serves as an excellent substrate for methylation in vitro, hypomethylation of DNA in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 81 22  شماره 

صفحات  -

تاریخ انتشار 1984